wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

π6π3sinxsinx+cosxdx

Open in App
Solution


Let I = π6π3sinxsinx+cosxdx .....(1)
Then,
I=π6π3sinπ3+π6-xsinπ3+π6-x+cosπ3+π6-xdx abfxdx=abfa+b-xdx=π6π3sinπ2-xsinπ2-x+cosπ2-xdx=π6π3cosxcosx+sinxdx .....2

Adding (1) and (2), we get

2I=π6π3sinx+cosxsinx+cosxdx2I=π6π3dx2I=xπ6π32I=π3-π6=π6I=π12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon