wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate each of the following integrals:

π6π3tanxtanx+cotxdx

Open in App
Solution


Let I = π6π3tanxtanx+cotxdx .....(1)

Then,

I=π6π3tanπ3+π6-xtanπ3+π6-x+cotπ3+π6-xdx abfxdx=abfa+b-xdx=π6π3tanπ2-xtanπ2-x+cotπ2-xdx=π6π3cotxcotx+tanxdx .....2

Adding (1) and (2), we get

2I=π6π3tanx+cotxtanx+cotxdx2I=π6π3dx2I=xπ6π32I=π3-π6=π6I=π12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon