wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
cos6π16+cos63π16+cos65π16+cos67π16

Open in App
Solution

cos6π16+cos63π16+cos65π16+cos67π16=cos6π16+cos6(π2π16)+cos63π16+cos6(π23π16)=(cos6π16+sin6π16)+(cos63π16+sin63π16)=[(cos2π16+sin2π16)(cos4π16cos2π16sin2π16+sin2π16)]+[(cos23π16+sin23π16)(cos43π16cos43π16sin23π16+sin23π16)]=[cos4π16cos2π16sin2π16+sin2π16]+[cos43π16cos23π16sin23π16+sin23π16]=[[cos2π16+sin2π16]23cos2π16sin2π16]+[[cos23π16+sin23π16]23cos23π16sin23π16]=23cos2π16sin2π163cos23π16sin23π16=234(2sinπ16cosπ16)234(2sin3π16cos3π16)2=234[sin2π8+sin23π8]=234[sin2π8+sin2[π2π8]]=234[sin2π8+cos2π8]=234=54

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon