Evaluate a3+b3+c3−3abc(a+b+c),where(a+b+c)≠0.
We have the identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca) Taking (a+b+c) from R.H.S. to L.H.S., we get a3+b3+c3−3abc(a+b+c)=a2+b2+c2−ab−bc−ca