wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :

(i) 23 cos4 30-sin4 45°-3sin2 60°-sec2 45°+14cot2 30°

(ii) 4sin4 30°+cos4 60°-23sin2 60°-cos2 45°+12 tan2 60°

(iii) sin 50°cos 40°+cosec 40°sec 50°-4 cos 50° cosec 40°

(iv) tan 35° tan 40° tan 45° tan 50° tan 55°

(v) cosec (65° + θ) − sec (25° − θ) − tan (55° − θ) + cot (35° + θ)

(vi) tan 7° tan 23° tan 60° tan 67° tan 83°

(vii) 2 sin 68°cos 22°-2 cot 15°5 tan 75°-3 tan 45° tan 20° tan 40° tan 50° tan 70°5

(viii) 3 cos 55°7 sin 35°-4cos 70° cosec 20°7tan 5° tan 25° tan 45° tan 65° tan 85°

(ix) sin 18°cos 72°+3 tan 10° tan 30° tan 40° tan 50° tan 80°

(x) cos 58°sin 32°+sin 22°cos 68°-cos 38° cosec 52°tan 18° tan 35° tan 60° tan 72° tan 55°

(xi) 3 tan 41°cot 49°2-sin 35° sec 55°tan10° tan20° tan60° tan70° tan80°2

Open in App
Solution

We have to evaluate the following values-

(i) We will use the values of known angles of different trigonometric ratios.

(ii) We will use the values of known angles of different trigonometric ratios.

(iii) We will use the properties of complementary angles.

(iv) We will use the properties of complementary angles.

(v) We will use the properties of complementary angles.

(vi) We will use the properties of complementary angles.

(vii) We will use the properties of complementary angles.

(viii) We will use the properties of complementary angles.

(ix) We will use the properties of complementary angles.

(x) We will use the properties of complementary angles.



(xi)
3tan41°cot49°2-sin35°sec55°tan10°tan20°tan60°tan70°tan80°2=3tan90°-49°cot49°2-sin35°sec90°-35°tan10°tan20°tan60°tan90°-20°tan90°-10°2=3cot49°cot49°2-sin35°cosec35°tan10°tan20° ×3× cot20°cot10°2 tan90°-θ=cotθ and sec90°-θ=cosecθ
=32-1tan10°cot10°×tan20°cot20°×32 cosecθ=1sinθ=9-11×1×32 cotθ=1tanθ=9-13=263


flag
Suggest Corrections
thumbs-up
1
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon