Evaluate :
(i) 372−362 (ii) 852−842
(iii) 1012−1002
(i) 372−362
Using property, for any natural number n,
(n+1)2−n2=(n+1)+n⇒(36+1)2−362=(36+1)+36⇒372−362=37+36⇒372−362=73
(ii) 852−842
Using property, for any natural number n,
(n+1)2−n2=(n+1)+n⇒(84+1)2−842=(84+1)+84⇒852−842=85+84⇒852−842=169
(iii) 1012−1002
Using property, for any natural number n,
(n+1)2−n2=(n+1)+n⇒(100+1)2−1002=(100+1)+100⇒1012−1002=101+100⇒1012−1002=201