Evaluate :
(i) (6−xy)(6+xy)
(ii) (7x+23y)(7x−23y)
(iii) (a2b+2ba)(a2b−2ba)
(iv) (3x−12y)(3x+12y)
(v) (2a+3)(2a−3)(4a2+9)
(vi) (a+bc)(a−bc)(a2+b2c2)
(vii) (5x+8y)(3x+5y)
(viii) (7x+15y)(5x−4y)
(ix) (2a−3b)(3a+4b)
(x) (9a−7b)(3a−b)
(i) (6−xy)(6+xy)=6(6+xy)−xy(6+xy)=36+6xy−6xy+(xy)2=36−x2 y2
(ii) (7x+23y)(7x−23y)
=7x(7x−23y)(7x−23y)
=49x2−143xy+143xy−49y2=49x2−49y2
(iii) (a2b+2ba)(a2b−2ba)=a2b(a2b−2ba)+2ba(a2b−2ba)
=a24b2−1+1−4b2a2=a24b2−4b2a2
(iv) (3x−12y)(3x+12y)=3x(3x+12y)−12y(3x+12y)
=9x2+3x2y−3x2y−14y2=9x2−14y2
(v) (2a+3)(2a−3)(4a2+9)=[(2a)2−(3)2](4a2+9)[(a+b)(a−b)=a2−b2]
=(4a2−9)(4a2+9)
=(4a2)2−(9)2 [(a+b)(a−b)=a2−b2]
=16a4−81
(vi) (a+bc)(a−bc)(a2+b2c2)=[(a)2−(bc)2](a2+b2c2)=[(a)2−(bc)2](a2+b2c2)
[(a+b)(a−b)=a2−b2]
=(a2−b2c2)(a2+b2c2)
=(a2)2−(b2c2)2 [∵(a+b)(c−b)=a2−b2]
=a4−b4c4
(vii) (5x+8y)(3x+5y)=5x(3x+5y)+8y(3x+5y)
=15x2+25xy+24xy+40y2
=15x2+49xy+40y2
(viii) (7x+15y)(5x−4y)=7x(5x−4y)+15y(5x−4y)
=35x2−28xy+75xy−60y2
=35x2+47xy−60y2
(ix) (2a−3b)(3a+4b)=2a(3a+4b)−3b(3a+4b)
=6a2+8ab−9ab−12b2
=6a2−ab−12b2
(x) (9a−7b)(3a−b)=9a(3a−b)−7b(3a−b)
=27a2−9ab−21ab+7b2
=27a2−30ab+7b2