LetI=∫π20log[4+3sinx4+3cosx]dx−−−(1)=∫π20log[4+3sin(π2−x)4+3cos(π2−x)]dx=∫π20log[4+3cosx4+3sinx]dx−−−−−(2)now,adding(1)+(2)wegetI+I=∫π20{log[4+3sinx4+3cosx]+log[4+3cosx4+3sinx]}dx2I=∫π20log{[4+3sinx4+3cosx]×[4+3cosx4+3sinx]}dx2I=∫π20log(1)dx2I=0∴I=0Hence,I=∫π20log[4+3sinx4+3cosx]dx=1.