No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(ex−e−x)cosecx2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(ex−e−x)cotx2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(ex−e−x)secx2+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(ex−e−x)secx2+c I=∫ex(1+sinx)+e−x(1−sinx)1+cosxdx We know that ∫ex(f(x)+f′(x))dx=exf(x)+c ⇒I=∫ex−e−x+(ex−e−x)sinx1+cosxdx⇒I=∫[ex+e−x2sec2x2+(ex−e−x)tanx2]dx ⇒I=12[∫ex(sec2x2+2tanx2)dx+∫e−x(sec2x2−2tanx2)dx] ⇒I=(ex−e−x)tanx2+c