i)∫x2+1x4+1dx=∫1+1x2x2+1x2dx
=∫1+1x2(x−1x)2+2dx
Let
x−1x=t⇒(1+1x2)dx=dt
Therefore, the integral become-
∫dtt2+(√2)2
=1√2tan−1(t√2)+C
Substituting the value of t, we get
=1√2tan−1⎛⎜
⎜
⎜⎝(1+1x2)√2⎞⎟
⎟
⎟⎠+C
=1√2tan−1(x2+1√2x2)+C
ii)∫1x2+1dx
∫1x2+(1)2dx
=tan−1x+C