(i) Given : limx→0sin4xsin2x
Substituting the given value,
limx→0sin4xsin2x=sin4(0)sin2(0)
=sin0sin0
=00
Since it is in 00 form, we need to simplify it.
=(limx→0sin4x)÷(limx→0sin2x)
=(limx→0sin4x⋅4x4x)÷(limx→0sin2x⋅2x2x)
=(limx→0sin4x4x×limx→04x2x)÷(limx→0sin2x2x)
We know that limx→0sinnxnx=1
=1×limx→02×1=1×2×1
=2
∴limx→0sin4xsin2x=2
(ii) Given: limx→0tanxx
=limx→01x×tanx
=limx→01x×sinxcosx
=limx→0sinxx×1cosx
=limx→0sinxx×limx→01cosx
We know that limx→0sinnxnx=1
=1×1cos0
=1
∴limx→0tanxx=1