1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 1
Evaluate ∫0...
Question
Evaluate
∫
1
0
cot
−
1
(
1
−
x
+
x
2
)
d
x
.
A
π
−
log
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
π
−
log
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
+
log
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
π
−
log
2
∫
1
0
cot
−
1
(
1
−
x
+
x
2
)
d
x
=
∫
1
0
tan
−
1
(
1
1
−
x
+
x
2
)
d
x
=
∫
1
0
tan
−
1
(
1
1
−
x
(
1
−
x
)
)
d
x
=
∫
1
0
tan
−
1
(
(
x
)
+
(
1
−
x
)
1
−
x
(
1
−
x
)
)
d
x
∵
Property of
tan
−
1
(
x
)
=
∫
1
0
[
tan
−
1
x
+
tan
−
1
(
1
−
x
)
]
d
x
Taking dummy valuable approach :
Let
(
1
−
x
)
=
t
−
d
x
=
d
t
x
→
0
to
1
⇒
t
→
1
to
0
=
∫
1
0
tan
−
1
x
d
x
−
∫
0
1
tan
−
1
d
t
=
2
∫
1
0
tan
−
1
x
d
x
(
R
e
p
l
a
c
i
n
g
d
u
m
m
y
∵
∫
b
a
f
(
t
)
d
t
=
∫
a
b
b
(
t
)
d
t
=
2
(
π
4
−
log
e
2
2
)
=
π
4
−
log
2
↑
∫
1
0
tan
−
1
x
d
x
=
∫
1
0
tan
−
1
x
.1
d
x
By part integration
=
[
x
tan
−
1
x
]
1
0
−
∫
1
0
x
(
1
1
+
x
2
)
d
x
=
π
4
−
0
−
1
2
∫
1
0
d
(
log
e
(
1
+
x
2
)
)
=
π
4
−
1
2
[
log
e
(
1
+
x
2
)
]
1
0
π
4
−
log
2
2
=
π
4
−
log
2
Suggest Corrections
0
Similar questions
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
[Karnataka CET 1999]