∫10xdx√1+x2
=12∫102xdx√1+x2
Substituting 1+x2=t⇒2xdx=dt,
The limits of the integration becomes
x=0⇒t=1+0=1
x=1⇒t=1+12=2
∴12∫102xdx√1+x2=12∫21dt√t=12∫21t−12dt
=12⎡⎢
⎢
⎢
⎢⎣t−12+1−12+1⎤⎥
⎥
⎥
⎥⎦21
=12⎡⎢
⎢
⎢⎣√t12⎤⎥
⎥
⎥⎦21=[√t]21
=√2−√1
=√2−1
Hence, the value of required integration is √2−1