wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 10e23xdx as a limit of a sum.

Open in App
Solution

Let f(x)=e23x,then 10e23x dx=10f(x) dxWe know thatbaf(x)dx=limh0h [f(a)+f(a+h)+f(a+2h)+....+f{a+(n1)h}]where, h=banHere,a=0,b=1 and nh=1 and f(x)=e23x f(0)=e2;f(0+h)=e23h and so on. 10e23xdx=limh0 h{f(0)+f(0+h)+f(0+2h)+...+f(0+(n1)h)}=limh0 h{e2+e23h+e26h+....+e23(n1)h}=limh0 he2{1+e3h+e6h+....e3(n1)h}=limh0he2{1(e3h)n}1e3h (this is a GP series, where a=1,r=|e3h|<1)=limh0e2{1(e3(1))}1e3h3h(3) [ nh=1]=e2{1(e3)}3 limh0 e3h13h=13(e2e1) ( limx0ex1x=1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon