Evaluate ∫10e2−3xdx as a limit of a sum.
Let f(x)=e2−3x,then ∫10e2−3x dx=∫10f(x) dxWe know that∫baf(x)dx=limh→0h [f(a)+f(a+h)+f(a+2h)+....+f{a+(n−1)h}]where, h=b−anHere,a=0,b=1 and nh=1 and f(x)=e2−3x∴ f(0)=e2;f(0+h)=e2−3h and so on.∴ ∫10e2−3xdx=limh→0 h{f(0)+f(0+h)+f(0+2h)+...+f(0+(n−1)h)}=limh→0 h{e2+e2−3h+e2−6h+....+e2−3(n−1)h}=limh→0 he2{1+e−3h+e−6h+....e−3(n−1)h}=limh→0he2{1−(e−3h)n}1−e−3h (this is a GP series, where a=1,r=|e−3h|<1)=limh→0e2{1−(e−3(1))}1−e−3h−3h(−3) [∵ nh=1]=e2{1−(e−3)}3 limh→0 e−3h−1−3h=13(e2−e−1) (∵ limx→0ex−1x=1)