wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 30(2x2+3x+5)dx as limit of a sum.

Open in App
Solution

@page { margin: 2cm } p { margin-bottom: 0.25cm; line-height: 120% }

30(2x2+3x+5)dx

here ,

f(x)=2x2+3x+5a=0,b=3

nh=ba=30=3

baf(x)dx=limh0h[f(a)+f(a+h)+....+f(a+(n1)h)]

baf(x)dx=limh0h[f(0)+f(h)+f(2h)+...+f(n1)h]

=limh0h[5+(2h2+3h+5)+(8h2+6h+5)+.....+{2(n1)2h+3(n1)h+5}]

=limh0h[5n+h2(2+8+.......+2(n1)2)+h(3+6+.....3(n1))]

=limh0h[5n+2h2(1+4+.......+(n1)2)+3h(1+2+.....(n1))]

=limh0h[5n+2h2×n(n1)(2n1)6+3hn(n1)2]

=limh0h[5nh+nh(nhh)(2nhh)3+3nh(nhh)2]

=limh0h[5×3+3(3h)(6h)3+9(3h)2]

=15+3×6+9×32

=15+18+272

=33+272

=66+272

=932





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon