3∫0(2x2+3x+5)dx
here ,
f(x)=2x2+3x+5a=0,b=3
nh=b−a=3−0=3
b∫af(x)dx=limh→0h[f(a)+f(a+h)+....+f(a+(n−1)h)]
⇒b∫af(x)dx=limh→0h[f(0)+f(h)+f(2h)+...+f(n−1)h]
=limh→0h[5+(2h2+3h+5)+(8h2+6h+5)+.....+{2(n−1)2h+3(n−1)h+5}]
=limh→0h[5n+h2(2+8+.......+2(n−1)2)+h(3+6+.....3(n−1))]
=limh→0h[5n+2h2(1+4+.......+(n−1)2)+3h(1+2+.....(n−1))]
=limh→0h[5n+2h2×n(n−1)(2n−1)6+3hn(n−1)2]
=limh→0h[5nh+nh(nh−h)(2nh−h)3+3nh(nh−h)2]
=limh→0h[5×3+3(3−h)(6−h)3+9(3−h)2]
=15+3×6+9×32
=15+18+272
=33+272
=66+272
=932