wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:120dx(1+x2)1x2

Open in App
Solution

Let I=120dx(1+x2)1x2
Substituting x=sinθ, where θ[π2,π2]
dx=cosθdθ
The limits of the integration become
x=0sinθ=0θ=0
x=12sinθ=12θ=π6
I=π60cosθdθ(1+sin2θ)1sin2θ
Solution:
I=π60cosθdθ(1+sin2θ)cosθ[θ[π2,π2]]
I=π60dθ1+sin2θ
I=π60sec2θdθsec2θ+sin2θsec2θ
I=π60sec2θdθ1+tan2θ+tan2θ
I=π60sec2θdθ1+2tan2θ
I=12π60sec2θdθtan2θ+12
I=12π60sec2θdθtan2θ+(12)2
Substituting tanθ=tdt=sec2θdθ
The limits of the integration become
θ=0t=tan0=0
θ=π6t=tanπ6=13
I=12130dtt2+(12)2
I=12⎢ ⎢ ⎢ ⎢112tan1⎜ ⎜ ⎜ ⎜t12⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥130
I=12⎢ ⎢ ⎢ ⎢tan1⎜ ⎜ ⎜ ⎜1312⎟ ⎟ ⎟ ⎟tan1⎜ ⎜ ⎜ ⎜012⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥
I=12tan123
Hence, the value of required integration is 12tan123

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon