Let I=∫120dx(1+x2)√1−x2
Substituting x=sinθ, where θ∈[−π2,π2]
⇒dx=cosθdθ
The limits of the integration become
x=0⇒sinθ=0⇒θ=0
x=12⇒sinθ=12⇒θ=π6
I=∫π60cosθdθ(1+sin2θ)√1−sin2θ
Solution:
⇒I=∫π60cosθdθ(1+sin2θ)cosθ[∵θ∈[−π2,π2]]
⇒I=∫π60dθ1+sin2θ
⇒I=∫π60sec2θdθsec2θ+sin2θsec2θ
⇒I=∫π60sec2θdθ1+tan2θ+tan2θ
⇒I=∫π60sec2θdθ1+2tan2θ
⇒I=12∫π60sec2θdθtan2θ+12
⇒I=12∫π60sec2θdθtan2θ+(1√2)2
Substituting tanθ=t⇒dt=sec2θdθ
The limits of the integration become
θ=0⇒t=tan0=0
θ=π6⇒t=tanπ6=1√3
⇒I=12∫1√30dtt2+(1√2)2
⇒I=12⎡⎢
⎢
⎢
⎢⎣11√2tan−1⎛⎜
⎜
⎜
⎜⎝t1√2⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥⎦1√30
⇒I=1√2⎡⎢
⎢
⎢
⎢⎣tan−1⎛⎜
⎜
⎜
⎜⎝1√31√2⎞⎟
⎟
⎟
⎟⎠−tan−1⎛⎜
⎜
⎜
⎜⎝01√2⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥⎦
⇒I=1√2tan−1√23
Hence, the value of required integration is 1√2tan−1√23