The correct option is
A 815Given ∫π20cos5(x)dx
=∫π20cos4(x)cos(x)dx
=∫π20[1−sin2(x)]2cos(x)dx .....1 ∵cos2(x)=1−sin2(x)
Let sin(x)=t ......2
On differentiating equation 2.
cos(x)dx=dt ......3
When x=0,t=0; x=π2,t=1
Substituting values in equation 1.
∫10[1−t2]2dt
=∫10[1+t4−2t2]dt
=∫10dt+∫10t4dt−∫102t2dt
=[t]10+[t55]10−2[t33]10
=1+15−2[13]
=1+15−23
=15+3−1015
=815