I=∫π20x sin x cos xsin4x+cos4x
⇒I=∫π20(π2−x)sin(π2−x)cos(π2−x)sin4(π2−x)+cos4(π2−x)
⇒I=∫π20(π2−x)cosx sinxcos4x+sin4xdx …(ii)
Adding (i) and (ii) 2I=π2∫π20cos !x sin xcos4x+sin4xdx
⇒2I=π2×2∫π20cos x sin xcos4x+sin4xdx
⇒2I=π2[∫π20cos x sin xcos4x+sin4xdx+∫π2π4cos x sin xcos4x+sin4x]dx
⇒2I=π2[∫π40tan x sec2x1+tan4xdx+∫π2π4cot x cosec2xcot4x+1dx]
Substituting tan2x=t and cot2x=u in both integrals respectively
⇒2tan x sec2xdx=dt and 2cosec2xcotxdx=−du
Also when x=0⇒t=0, when x=π4⇒t=1
And, when x=π4⇒u=1, when x=π2⇒u=0
∴2I=π2[12∫10dt1+t2−12∫01du1+u2]
⇒2I=π2[12∫10dt1+t2+12∫01du1+u2]
⇒I=π8[[tan−1t]10+[tan−1u]10]
⇒I=π8[π4+π4]=π216or,I=(π4)2
OR
Let ∫40(x+e2x)dx
∵∫baf(x)dx=limn→∞[f(a)+f(a+h)+f(a+2h)+…+f(a+(n−1)h)]
∴∫baf(x)dx=limn→∞∑n−1r=0f(a+rh) [∵n→∞,h→0⇒nh=b−a]
Here f(x)=x+e2x and a=0b=4 so nh=4−0=4
⇒f(0+rh)=0rh+e2×0+2rh=rh+e2rh
∴I=∫40(x+e2x)dx=limn→∞∑n−1r=0f(a+rh)[rh+e2h]
⇒I=limn→∞{h∑n−1r=0r+∑n−1r=0e2rh}
⇒I=limn→∞{h(n(n−1)2)+[1+e2h+e4h+…+e2(n−1)h]}
⇒I=limn→∞{nh(nh−h)2+h[1×[(e2h)n−1]e2h−1]}
⇒I=limn→∞{nh(nhy−h)2+2he2h−1×e2nh−12}
⇒I={4(4−0)2+1×e2×4−12}
∴I=15+e82