CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π20x sin x cos xsin4x+cos4xdx

OR

Evaluate 40(x+e2x)dx as the limit of a sum.

Open in App
Solution

I=π20x sin x cos xsin4x+cos4x

I=π20(π2x)sin(π2x)cos(π2x)sin4(π2x)+cos4(π2x)

I=π20(π2x)cosx sinxcos4x+sin4xdx (ii)

Adding (i) and (ii) 2I=π2π20cos !x sin xcos4x+sin4xdx

2I=π2×2π20cos x sin xcos4x+sin4xdx

2I=π2[π20cos x sin xcos4x+sin4xdx+π2π4cos x sin xcos4x+sin4x]dx

2I=π2[π40tan x sec2x1+tan4xdx+π2π4cot x cosec2xcot4x+1dx]

Substituting tan2x=t and cot2x=u in both integrals respectively

2tan x sec2xdx=dt and 2cosec2xcotxdx=du

Also when x=0t=0, when x=π4t=1

And, when x=π4u=1, when x=π2u=0

2I=π2[1210dt1+t21201du1+u2]

2I=π2[1210dt1+t2+1201du1+u2]

I=π8[[tan1t]10+[tan1u]10]

I=π8[π4+π4]=π216or,I=(π4)2

OR

Let 40(x+e2x)dx

baf(x)dx=limn[f(a)+f(a+h)+f(a+2h)++f(a+(n1)h)]

baf(x)dx=limnn1r=0f(a+rh) [n,h0nh=ba]

Here f(x)=x+e2x and a=0b=4 so nh=40=4

f(0+rh)=0rh+e2×0+2rh=rh+e2rh

I=40(x+e2x)dx=limnn1r=0f(a+rh)[rh+e2h]

I=limn{hn1r=0r+n1r=0e2rh}

I=limn{h(n(n1)2)+[1+e2h+e4h++e2(n1)h]}

I=limn{nh(nhh)2+h[1×[(e2h)n1]e2h1]}

I=limn{nh(nhyh)2+2he2h1×e2nh12}

I={4(40)2+1×e2×412}

I=15+e82

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon