Evaluate : ∫π40sinx+cosx16+9sin2xdx.
OR
Evaluate ∫31(x2+3x+ex)dx, as the limit of the sum.
Let I = ∫π40sinx+cosx16+9sin2xdx.
Put sin x−cos x=t⇒(cos x+sin x)dx=dt and , (sin x−cos x)2=t2⇒sin 2x=1−t2.
When x = 0 ⇒t=−1, when x=π4⇒t=0
So, I = ∫0−1125−9t2dt=∫0−1152−(3t)2dt=12×5×13[log|5+3t5−3t|]0−1
⇒I=130[log|1|−log∣∣28∣∣]=130 log4=115log2.
OR Let I =∫31(x2+3x+ex)dx
We know ∫baf(x)dx=limn→∞h[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)],As n→∞,h→0⇒nh=b−a∴∫baf(x)dx=limn→∞h∑n−1r=0f(a+rh)...(i)
Here f(x)=x2+3x+ex,a=1,b=3 ∴f(a+rh)=(a+rh)2+3(a+rh)+ea+rh⇒f(1+rh)=(1+rh)2+3(1+rh)+e1+rh=4+5rh+r2h2+eerh
By using (i) ∫13(x2+3x+ex)dx=limn→∞h∑n−1r=0[4+5rh+r2h2+eerh]⇒I=limn→∞h{h2∑n−1r=0r2+5h∑n−1r=0r+∑n−1r=04+e∑n−1r=0erh}
⇒i=limn→∞{h2n(n−1)(2n−1)6+5hn(n−1)2+4n+e(1+eh+e2h+...+e(n−1)h)}
⇒i=limn→∞{nh(nh−h)(2nh−h)6+5×nh(nh−h)2+4nh+e×(enh−1)(heh−1)}
Since n→∞,h⇒0⇒nh=3−1=2
So, I = 2(2−0)(4−0)6+52×(2(2−0))+4×2+e×(e2−1)(1)=623+(e3−e)
Hence I = ∫13(x2+3x+ex)dx=623+e3−e