CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : π40sinx+cosx16+9sin2xdx.
OR
Evaluate 31(x2+3x+ex)dx, as the limit of the sum.

Open in App
Solution

Let I = π40sinx+cosx16+9sin2xdx.

Put sin xcos x=t(cos x+sin x)dx=dt and , (sin xcos x)2=t2sin 2x=1t2.

When x = 0 t=1, when x=π4t=0

So, I = 011259t2dt=01152(3t)2dt=12×5×13[log|5+3t53t|]01

I=130[log|1|log28]=130 log4=115log2.

OR Let I =31(x2+3x+ex)dx

We know baf(x)dx=limnh[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)],As n,h0nh=babaf(x)dx=limnhn1r=0f(a+rh)...(i)

Here f(x)=x2+3x+ex,a=1,b=3 f(a+rh)=(a+rh)2+3(a+rh)+ea+rhf(1+rh)=(1+rh)2+3(1+rh)+e1+rh=4+5rh+r2h2+eerh

By using (i) 13(x2+3x+ex)dx=limnhn1r=0[4+5rh+r2h2+eerh]I=limnh{h2n1r=0r2+5hn1r=0r+n1r=04+en1r=0erh}

i=limn{h2n(n1)(2n1)6+5hn(n1)2+4n+e(1+eh+e2h+...+e(n1)h)}

i=limn{nh(nhh)(2nhh)6+5×nh(nhh)2+4nh+e×(enh1)(heh1)}

Since n,h0nh=31=2

So, I = 2(20)(40)6+52×(2(20))+4×2+e×(e21)(1)=623+(e3e)

Hence I = 13(x2+3x+ex)dx=623+e3e


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon