wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π/20xsinxcosxsin4x+cos4xdx.

Open in App
Solution

I=π20xsinxcosxsin4x+cos4x --- (1)

I=π20((π2x)cosxsinx)cos4+sin4xdx---(2)
Adding (1) and (2), we get
2I=π2π20sinxcosxsin4x+cos4xdx
Put sin2x=t
2sinxcosxdx=dt
Therefore, sinxcosxdx=dt2
2I=π2×1211dtt2+(1t)2
I=π810dt2t22t+1I=π16dtt2t+12
=π1610dt(t12)2+14=π16112tan1⎜ ⎜ ⎜t1212⎟ ⎟ ⎟∣ ∣ ∣10=π216

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon