wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π04xsinx1+cos2xdx.

Open in App
Solution

Let I=π04(πx)sin(π)x1+cos2(πx)dx
We know that f(ax)=f(a)f(x)
I=π04πsinx1+cos2xπ04xsinx1+cos2xdx
or, I=π04πsinx1+cos2xI
2I=4ππ0sinx1+cos2xdx
2I=4π.2×π0sinx1+cos2xdx {Applying2a0f(x)dx=2a0f(x)dxiff(2ax)=f(x)}
I=4ππ20sinx1+cos2xdx
Put cosx=t, sinxdx=dt
As well for x=0, x=π2
t=1,t=0
Therefore, I=4π01dt1+t2
I=4π10dt1+t2
{baf(x)dx=abf(x)dx}
I=4π[tan1t]10
=4π[tan11tan10]
=4π×π4=π2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon