wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π0xa2cos2x+b2sin2xdx

Open in App
Solution

Let I=π0xa2cos2x+b2sin2xdx
I=π0πxa2cos2(πx)+b2sin2(πx)dx
[a0f(x)dx=a0f(ax)dx]
I=π0πxa2cos2x+b2sin2xdx
I=π0πa2cos2x+b2sin2xdxπ0xa2cos2x+b2sin2xdx
I=ππ01a2cos2x+b2sin2xdxI
2I=ππ0πa2cos2x+b2sin2xdx
2I=2ππ201a2cos2x+b2sin2xdx
[cos2(πx)=cos2x,sin2(πx)=sin2x]
I=πb2π20sec2xa2b2+tan2x
Let tan x=tsec2x dx=dt
Changing the limit of integral when x=0t=0 and x=π2t
Therefore,
I=πb2π20sec2xa2b2+tan2xdx
=πb20dt(ab)2+t2
=πb2⎢ ⎢1abtan1⎜ ⎜tab⎟ ⎟⎥ ⎥0
=πab[tan1(bta)]0
=πab[limttan1(bta0)]
=πab[π2]
I=π22ab
Hence, π0xa2cos2x+b2sin2xdx =π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon