Let I=∫π0xa2cos2x+b2sin2xdx
⇒I=∫π0π−xa2cos2(π−x)+b2sin2(π−x)dx
[∵∫a0f(x)dx=∫a0f(a−x)dx]
⇒I=∫π0π−xa2cos2x+b2sin2xdx
⇒I=∫π0πa2cos2x+b2sin2xdx−∫π0xa2cos2x+b2sin2xdx
⇒I=π∫π01a2cos2x+b2sin2xdx−I
⇒2I=π∫π0πa2cos2x+b2sin2xdx
⇒2I=2π∫π201a2cos2x+b2sin2xdx
[∵cos2(π−x)=cos2x,sin2(π−x)=sin2x]
⇒I=πb2∫π20sec2xa2b2+tan2x
Let tan x=t⇒sec2x dx=dt
Changing the limit of integral when x=0⇒t=0 and x=π2⇒t→∞
Therefore,
I=πb2∫π20sec2xa2b2+tan2xdx
=πb2∫∞0dt(ab)2+t2
=πb2⎡⎢
⎢⎣1abtan−1⎛⎜
⎜⎝tab⎞⎟
⎟⎠⎤⎥
⎥⎦∞0
=πab[tan−1(bta)]∞0
=πab[limt→∞tan−1(bta−0)]
=πab[π2]
∴I=π22ab
Hence, ∫π0xa2cos2x+b2sin2xdx =π22ab