wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0xsinx1+cos2xdx

Open in App
Solution

Let I=π0xsinx1+cos2xdx ………(1)

I=π0(πx)sin(πx)1+cos2(πx)dx

=π0(πx)sinx1+cos2xdx ……..(2)

Adding both (1) and (2), we get

2I=π0πsinx1+cos2xdx

Let t=cosx cos0=1

dt=sinxdx cosπ=1

So, 2I=11πdt1+t2

2I=π11dt1+t2=π[tan1t]11

2I=π[π4(π4)]

2I=π22

I=π24

I=(π2)2.

1203823_1246362_ans_0406e36d7fec4fb99b436f48eb90249a.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon