Evaluate: ∫π04x sin x1+cos2xdx.
OR
Evaluate: ∫x+2√x2+5x+6dx.
Let I=∫π04x sin x1+cos2xdx …(i)
Using ∫a0f(x)dx=∫a0f(a−x)dx,I=∫π0sin x1+cos2(π−x)dx=∫π04(π−x)sin x1+cos2xdx …(ii)
Adding (i) and (ii), we get 21=4π∫π0sin x1+cos2(π−x)dx ⇒1=2π∫π0sin x1+cos2xdx
Put cos x=t⇒sin x dx=−dt. Also when, x=0⇒t=1andwhenx=π⇒t=−1
∴I=2π∫−11−dt1+t2 ⇒1=2π[tab−1t]1−1=2π[tan−1(1)−tan−1(−1)]
⇒I=2π[π4−(−π4)] ∴ I=π2
OR
Let I=∫x+2√x2+5x+6dx ⇒I=∫12(2x+5)−12√x2+5x+6dx
⇒I=12∫(2x+5)√2+5x+6dx−12∫1√x2+5x+6dx
⇒I=12[2√x2+5x+6]−12∫1√(x+52)2−(12)2dx
⇒I=√x2+5x+6−12log∣∣∣(x+52)+√(x+52)2−(12)2∣∣∣+C
or, I=√x2+5x+6−12log∣∣x+52+√x2+5x+6∣∣+C