wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π04x sin x1+cos2xdx.

OR

Evaluate: x+2x2+5x+6dx.

Open in App
Solution

Let I=π04x sin x1+cos2xdx (i)

Using a0f(x)dx=a0f(ax)dx,I=π0sin x1+cos2(πx)dx=π04(πx)sin x1+cos2xdx (ii)

Adding (i) and (ii), we get 21=4ππ0sin x1+cos2(πx)dx 1=2ππ0sin x1+cos2xdx

Put cos x=tsin x dx=dt. Also when, x=0t=1andwhenx=πt=1

I=2π11dt1+t2 1=2π[tab1t]11=2π[tan1(1)tan1(1)]

I=2π[π4(π4)] I=π2

OR

Let I=x+2x2+5x+6dx I=12(2x+5)12x2+5x+6dx

I=12(2x+5)2+5x+6dx121x2+5x+6dx

I=12[2x2+5x+6]121(x+52)2(12)2dx

I=x2+5x+612log(x+52)+(x+52)2(12)2+C

or, I=x2+5x+612logx+52+x2+5x+6+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon