Let I=∫π0x1+sinαsinxdx
⇒I=∫π0π−x1+sinαsin(π−x)dx since ∫a0f(x)dx=∫a0f(a−x)dx
⇒,I=∫π0π1+sinαsin(π−x)dx−∫π0x1+sinαsin(π−x)dx
⇒,I=∫π0π1+sinαsin(π−x)dx−I
⇒,2I=∫π0π1+sinαsin(π−x)dx
Substituting sinx=2tanx21+tan2x2, we get
⇒2I=π∫π01+tan2x21+tan2x2+sinα×2tanx2dx
Let tanx2=t⇒sec2x2=2dt
Also,
when x→0,t→tan0=0
when x→π,t→tanπ2=∞
∴I=π2∫∞02dtt2+2tsinα+1
⇒I=π∫∞0dt(t+sinα)2+cos2α
⇒I=πcosα[tan−1(t+sinαcosα)]∞0
⇒I=πcosα[tan−1∞−tan−1(tanα)]
⇒I=πcosα(π2−α)