wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0x1+sinαsinxdx

Open in App
Solution

Let I=π0x1+sinαsinxdx
I=π0πx1+sinαsin(πx)dx since a0f(x)dx=a0f(ax)dx
,I=π0π1+sinαsin(πx)dxπ0x1+sinαsin(πx)dx
,I=π0π1+sinαsin(πx)dxI
,2I=π0π1+sinαsin(πx)dx
Substituting sinx=2tanx21+tan2x2, we get
2I=ππ01+tan2x21+tan2x2+sinα×2tanx2dx
Let tanx2=tsec2x2=2dt
Also,
when x0,ttan0=0
when xπ,ttanπ2=
I=π202dtt2+2tsinα+1
I=π0dt(t+sinα)2+cos2α
I=πcosα[tan1(t+sinαcosα)]0
I=πcosα[tan1tan1(tanα)]
I=πcosα(π2α)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon