wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : π0xtanxsecx+tanxdx

Open in App
Solution

Let I=π0xtanxsec x+tan xdx ...(i)I=π0(πx)tan(πx)sec(πx)+tan(πx)[a0f(x)dx=a0f(ax)dx]I=π0(πx)tan xsec x +tan xdx
By adding equations (i) and (ii), we obtain
2I=ππ0tan xsec x+tan xdx
Multiplying and dividing by (secxtanx), we obtain
2I=ππ0tanx(sec xtan x)sec2xtan2x=ππ0(sec x tan xtan2x)dx=ππ0sec x tan x dxππ0sec2 x dx+π0dx=π[secx]π0π[tan x]π0+π[x]π0=π(11)0+π(π0)=π(π2)2I=π(π2)I=π2(π2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon