Let I=∫π0xtanxsec x+tan xdx ...(i)I=∫π0(π−x)tan(π−x)sec(π−x)+tan(π−x)[∵∫a0f(x)dx=∫a0f(a−x)dx]I=∫π0(π−x)tan xsec x +tan xdx
By adding equations (i) and (ii), we obtain
2I=π∫π0tan xsec x+tan xdx
Multiplying and dividing by (secx−tanx), we obtain
2I=π∫π0tanx(sec x−tan x)sec2x−tan2x=π∫π0(sec x tan x−tan2x)dx=π∫π0sec x tan x dx−π∫π0sec2 x dx+∫π0dx=π[secx]π0−π[tan x]π0+π[x]π0=π(−1−1)−0+π(π−0)=π(π−2)⇒2I=π(π−2)⇒I=π2(π−2)