Evaluate : ∫π0x tanxsec x+tan xdx. OR Evaluate : ∫41 {|x-1|+|x-2|+|x-4|}dx.
Let I= ∫π0x tanxsec x+tan xdx....(i) ⇒∫π0(π−x)tan(π−x)sec(π−x)tan(π−x)dx=∫π0(π−x)tanxsecx+tanxdx...(ii)
Adding (i) and (ii),2I=π∫π0tan xsecx+tanxdx ⇒2I=π∫π0tanxsec x+tan x×secx−tanxsecx−tan xdx
⇒2I=π∫π0(secx tanx−tan2x)dx ⇒2I=π∫π0(secx tanx−sec2x+1)dx
⇒2I=π[secx−tanx+x]π0 ⇒2I=π{[secπ−tanπ+π]−[sec0−tan0+0]}
⇒2I=π{[−1−0+π]−[1−0+0]} ∴I=π(π−2)2.
OR Let I=∫41{|x−1|+|x−2|+|x−4|dx}
⇒I=∫41|x−1|dx+=∫41|x−2|dx+∫41|x−4|dx
⇒=∫41(x−1)dx+∫21|x−2|dx+∫42|x−2|dx−∫41(x−4)dx
⇒I=12[(x−1)2]41−∫21(x−2)dx+∫42(x−2)dx−12[(x−4)2]41
⇒I=12[9−0]−12[(x−2)2]21+12[(x−2)2]42−12[0−9]
⇒I=92−12[0−1]+12[4−0]+92=11+12=232