Let I=∫1−1x+|x|+1x2+2|x|+1dx=∫1−1xx2+2|x|+1dx+∫1−1|x|+1x2+2|x|+1dxLetf(x)=xx2+2|x|+1,g(x)=|x|+1x2+2|x|+1
⇒f(−x)=−x(−x)2+2|−x|+1,g(−x)=|−x|+1(−x)2+2|−x|+1
⇒f(−x)=−xx2+2|x|+1,g(−x)=|x|+1x2+2|x|+1
⇒f(−x)=−f(x),g(−x)=g(x)∴f(x) is odd and g(x) is even function.
Therefore, I=0+2∫10|x|+1x2+2|x|+1dx=2∫10x+1x2+2x+1dx=2∫10x+1(x+1)2dx=2∫101x+1dx
⇒I=2[log|x+1]10=2[log 2−log 1]∴I=2log2 (∵log1=0)