wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :
31(x2+3x+ex)dx,
as the limit of the sum.

Open in App
Solution

Let I=31(x2+3x+ex)dx

Here, f(x)=x2+3x+ex, a=1, b=3 and nh=31=2.

Now, 31(x2+3x+ex)dx

= limh0[f(1+h)+f(1+2h)+...+f(1+nh)]

= limh0⎢ ⎢(1+h)2+3(1+h)+e(1+h)+(1+2h)2)+3(1+2h)+e(1+2h)+...+(1+nh)2+3(1+nh)+e(1+nh)⎥ ⎥

= limh01+h2+2h+3+3h+e.eh+1+22h2+4h+3+6h+e.e2h+...+1+n2h2+2nh+3+3nh+e.enh

=limh0⎢ ⎢ ⎢ ⎢n+h2(1+22 +...+n2)+2h(1+2+...+n)+3n+3h(1+2+...+n)+e.(eh+e2h+...+enh)⎥ ⎥ ⎥ ⎥

=limh0n+h2n(n+1)(2n+1)6+2hn(n+1)2+3n+3hn(n+1)2+e.eh(enh1eh1)

= limh0nh+nh(nh+h)(2nh+h)6+nh(nh+h)+3nh+32nh(nh+h)+h.e.eh(enh1eh1)
=2+2×2×46+2×2+3×2+32×2×2+e limh0 eh(e21eh1h)

= 2+166+4+6+6+e.e0(e211)

= 623+e(e21)

=623+e3e

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon