Let I=∫31(x2+3x+ex)dx
Here, f(x)=x2+3x+ex, a=1, b=3 and nh=3−1=2.
Now, ∫31(x2+3x+ex)dx
= limh→0[f(1+h)+f(1+2h)+...+f(1+nh)]
= limh→0⎡⎢
⎢⎣(1+h)2+3(1+h)+e(1+h)+(1+2h)2)+3(1+2h)+e(1+2h)+...+(1+nh)2+3(1+nh)+e(1+nh)⎤⎥
⎥⎦
= limh→0⎡⎢⎣1+h2+2h+3+3h+e.eh+1+22h2+4h+3+6h+e.e2h+...+1+n2h2+2nh+3+3nh+e.enh⎤⎥⎦
=limh→0⎡⎢
⎢
⎢
⎢⎣n+h2(1+22 +...+n2)+2h(1+2+...+n)+3n+3h(1+2+...+n)+e.(eh+e2h+...+enh)⎤⎥
⎥
⎥
⎥⎦
=limh→0⎡⎢⎣n+h2n(n+1)(2n+1)6+2hn(n+1)2+3n+3hn(n+1)2+e.eh(enh−1eh−1)⎤⎥⎦
= limh→0⎡⎢⎣nh+nh(nh+h)(2nh+h)6+nh(nh+h)+3nh+32nh(nh+h)+h.e.eh(enh−1eh−1)⎤⎥⎦
=2+2×2×46+2×2+3×2+32×2×2+e ⋅limh→0 eh(e2−1eh−1h)
= 2+166+4+6+6+e.e0(e2−11)
= 623+e(e2−1)
=623+e3−e