The correct option is
B log√1+x−log√1+x2+tan−1x+c∫11+x+x2+x3dx
Factors of 1+x+x2+x3=(x2+1)(x+1)
1(1+x)(x2+1)=Ax+1+Bx+Cx2+1
1=A(x2+1)+(Bx+C)(x+1)
1=Ax2+A+Bx2+Bx+Cx+C
1=(A+B)x2+(B+C)x+A+C
A+B=0
B+C=0
A+C=0
Therefore, 2A=1
A=12
B=−12
C=12
So, =∫dx2(x+1)+∫−12x+12(x2+1)dx
=12∫dx(x+1)−12∫(x−1)(x2+1)dx
=12∫dx(x+1)−14∫(2x−4)(x2+1)dx
=12ln∣(x+1)∣−14∫2xdx=x2+1+2∫dx1+x2
=x2+1=u
=2xdx=u
=12ln∣(x+1)∣−14∫duu+2tan−1x+C
=12ln∣(x+1)∣−14ln∣x2+1∣+2tan−1x+C