wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:(3x+5)dxx2+4x+3.

Open in App
Solution

(3x+5)dx(x2+4x+3)
If u=x2+4x+3.
du=(2x+4)dx
3x+53(x2+4x+3)
=322x+103(x2+4x+3)
=322x+44+103(x2+4x+3)dx
=322x+4(x2+4x+3)dx3223(x2+4x+3)
=32du(u)1(u)
I1=32(u)12du
I1=32(u)12+C1
=3(u)+C1
Hence, I1=3(x2+4x+3)+C1
I2=1(x2+4x+3)dx
=dx(x2+4x+44+3)
=1((x+2)2(1)2dx
=dx(x2a2)=logx+(x2a2)+C2=logx+2+(x+2)21)+C2
I=3(x2+4x+3)logx+2+(x2+4x+3)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon