wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
cosx.ex.x2dx.

Open in App
Solution

cosx.ex.x2dx
Let u=x2du=2xdx and dv=excosxv=excosxdx
Using the above we have,
cosx.ex.x2dx=x2excosxdxexcosx2xdx
=x2excosxdxexcosx2×x22+c
=x2excosxdxexx2cosx+c where c is the constant of integration. ..........(1)
Let I=excosxdx
Let u=exdu=exdx and dv=cosxdxv=sinx
I=exsinxexsinxdx .......(2)
Consider exsinxdx
Let u=exdu=exdx and dv=sinxdxv=cosx
I=exsinx[excosxexcosxdx]
I=exsinx+excosxexcosxdx
I=ex(sinx+cosx)I where I=excosxdx
2I=ex(sinx+cosx)
I=ex(sinx+cosx)2 ....(3)
Substituting (3) in (1) we get
cosx.ex.x2dx=x2excosxdxexx2cosx+c
=x2Iexx2cosx+c
=x2(ex(sinx+cosx)2)exx2cosx+c
=exx22sinx+exx2cosx(121)+c
=exx22sinxexx22cosx+c
=exx22(sinxcosx)+c where c is the constant of integration
cosx.ex.x2dx=ex.x22(sinxcosx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon