∫1−2x2x3−3x=∫1−2x2x(x2−3)=∫1−2x2x(x−√3)(x+√3)⇒1−2x2(x3−3x)=Ax+B(x−√3)+Cx+√3
⇒1−2x2=A(x2−3)+Bx(x+√3)+Cx(x−√3)
=Ax2−3A+Bx2+√3Bx+Cx2−√3Cx
⇒1=−3A
0=√3B−C√3
−2=A+B+C
√3B=√3C
⇒B=C
⇒A=−13
−2=A+B+C
−2=−13+B+B
−2+13=2B
⇒B=−56
⇒c=−56
⇒∫1−2x2x3−3x=−13∫1xdx−56∫1x+√3dx
=−13logx−56log(x−√3)−56log(x+√3)
=−13logx−56[log(x−√3)+log(x+√3)]
=−13logx−56log(x2−3)+c
Hence, the answer is −13logx−56log(x2−3)+c.