1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 2
Evaluate: ∫...
Question
Evaluate:
∫
1
3
+
2
sin
x
+
c
o
s
x
d
x
A
I
=
tan
−
1
[
tan
(
x
2
)
−
1
]
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I
=
tan
−
1
[
tan
(
x
2
)
+
1
]
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
I
=
tan
−
1
[
tan
(
x
2
)
−
2
]
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
I
=
tan
−
1
[
tan
(
x
2
)
+
1
]
+
c
Let
I
=
∫
1
3
+
2
sin
x
+
cos
x
d
x
put
tan
x
2
=
t
x
=
2
tan
−
1
t
d
x
=
2
d
t
(
1
+
t
2
)
and
sin
x
=
2
t
(
1
+
t
2
)
cos
x
=
(
1
−
t
2
)
1
+
t
2
)
I
=
∫
1
3
+
2
×
2
t
1
+
t
2
+
1
+
t
2
1
+
t
2
×
2
1
+
t
2
d
t
=
∫
2
d
t
3
+
3
t
2
+
4
t
+
1
−
t
2
=
2
∫
d
t
(
t
+
1
)
2
−
1
+
2
=
∫
d
t
t
2
+
2
t
+
2
=
∫
d
t
(
t
+
1
)
2
−
1
+
2
=
∫
d
t
(
t
+
1
)
2
+
1
2
=
tan
−
1
(
t
+
1
)
+
c
Therefore,
I
=
tan
−
1
[
tan
(
x
2
)
+
1
]
+
c
Suggest Corrections
0
Similar questions
Q.
∫
(
12
sin
x
+
5
cos
x
)
−
1
d
x
is [
c
is an arbitrary constant]
Q.
I
:
∫
1
3
+
4
cos
x
d
x
=
1
√
7
l
o
g
[
√
7
+
tan
(
x
/
2
)
√
7
−
tan
(
x
/
2
)
]
+
c
I
I
:
∫
d
x
cos
x
−
sin
x
=
1
√
2
log
|
tan
(
x
2
−
3
π
8
)
|
+
c
Q.
Assertion :
Assume:
I
=
∫
√
cos
2
x
sin
x
d
x
I
=
ln
⎡
⎢ ⎢
⎣
(
1
−
√
1
−
tan
2
x
tan
x
)
(
√
2
+
√
1
−
tan
2
x
√
2
−
√
1
−
tan
2
x
)
1
√
2
⎤
⎥ ⎥
⎦
+
C
Reason:
tan
x
=
sin
θ
→
I
=
∫
cos
2
θ
d
θ
sin
θ
(
1
+
sin
2
θ
)
Q.
Arguments of Z =
(
2
+
i
)
[
4
i
+
(
1
+
i
)
2
]
is :