wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 13cosx+4sinx+6dx

Open in App
Solution

dx3cosx+4sinx+6
Take cosx=1tan2x21+tan2x2 and sinx=2tanx21+tan2x2
dx3cosx+4sinx+6
=dx3⎜ ⎜1tan2x21+tan2x2⎟ ⎟+4⎜ ⎜2tanx21+tan2x2⎟ ⎟+6
=(1+tan2x2)dx3(1tan2x2)+4(2tanx2)+6(1+tan2x2)
=sec2x2dx12tan2x2+8tanx2+6+6tan2x2 where 1+tan2x2=sec2x2
Let t=tanx2dt=12sec2x2dx or 2dt=sec2x2dx
=2dt33t2+8t+6+6t2
=2dt3t2+8t+9
=23dtt2+83t+3
=23dtt2+2×43t+(43)2(43)2+3
=23dt(t+43)2+119
=23dt(t+43)2+(113)2 where dtx2+a2=1atan1xa
=23311tan1⎜ ⎜ ⎜ ⎜t+43113⎟ ⎟ ⎟ ⎟
=211tan1(3t+411)+c where c is the constant of integration
=211tan1⎜ ⎜3tanx2+411⎟ ⎟+c where t=tanx2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon