∫1sinx+sin2xdx∫1sinx+2sinxcosxdx
=∫sinxsin2x(1+2cosx)dx=∫sinx(1−cos2x)(1+2cosx)dx
∫sinx(1+cosx)(1−cosx)(1+2cosx)dx
put 1+2cosx=t,cosx=t−12−2sinxdx=dt
=12∫−1(1+t−12)(1−t−12)(1+t−1)dt
=−12∫1(1+t)(3−t)tdt=A1+t+B3−t+Ct
=A=−148,B=16,C=−112
⇒−∫12(1+t)(3−t)tdt=∫−148(3−t)dt+∫16(1+t)dt−∫112tdt
=−148ln|3−t|+16ln|1+t|−112ln|t|+C
=−−148ln|2−2cosx|+16ln|2+2cosx|−112ln|1+2cosx|+C