I=∫1x{logeex.logee2x.logee3x}dx
=∫1x{1logeex.1logee2x.1logee3x}dx
=∫dxx{logeex+logex}{logee2+logex2}{logee2+logx2}
=∫dxx{1+logex}{2+logex}{3+loge2}
Put logex=t⇒1x=dt
I=∫dt(1+t)(2+t)(3+t)=∫(12.1(1+t)−1(2+t)+1(3+t))dt
=12log|1+t|−log|2+t|+log|3+t|+C.
=12log|1+logex|−log|2+logex|+log|3+logex|+C.