The correct option is
D 12log∣∣∣x2x2−1∣∣∣+c∫dxx−x3
=∫dxx(1−x2)
=∫dxx(1−x)(1+x)
Solving by the method of partial fractions,
1x(1−x)(1+x)=Ax+B1−x+C1+x
⇒1=A(1−x)(1+x)+Bx(1+x)+Cx(1−x)
Put x=0⇒A=1
Put x=1⇒2B=1 or B=12
Put x=−1⇒−2C=1 or C=−12
Now,1x(1−x)(1+x)=1x+1211−x−1211+x
Hence ∫dxx−x3
=∫dxx+12∫dx1−x−12∫dx1+x
=log|x|−12log|1−x|−12log|1+x|+c
=22log|x|−12log∣∣(1−x2)∣∣+c
=12log∣∣x2∣∣−12log∣∣(1−x2)∣∣+c
=12log∣∣∣x21−x2∣∣∣+c
=12log∣∣∣x2x2−1∣∣∣+c for x≠0,1