wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 2(1x)(1+x2)dx

Open in App
Solution

2(1x)(1+x2)dx
2(1x)(1+x2)=A1x+Bx+cx2+1
=2(1x)(1+x2)=A(x2+1)+(B+c)(1x)(1x)(x2+1)
On Comparing both side we get
AB=0 BC=0 A+C=2
A=B B=C
A+C=2
A+A=2
2A=2
A=1
So A=B=C=1
2(1x)(1+x2)dx=11xdx+x+1x2+1dx
=1x1dx+122xx2+1dx+1x2+1dx
=log|x1|+12log(x2+1)+tan1x+c
=12[log(x2+1)2log|x1|+2tan1x]+c
=12[logx2+1(x1)2+2tan1x]+c
=12[logx2+1(1x)2+2tan1x]+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Let's Add Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon