∫2(1−x)(1+x2)dx
2(1−x)(1+x2)=A1−x+Bx+cx2+1
=2(1−x)(1+x2)=A(x2+1)+(B+c)(1−x)(1−x)(x2+1)
On Comparing both side we get
A−B=0 B−C=0 A+C=2
⇒A=B ⇒B=C
A+C=2
⇒A+A=2
⇒2A=2
⇒A=1
So A=B=C=1
∫2(1−x)(1+x2)dx=∫11−xdx+∫x+1x2+1dx
=∫−1x−1dx+12∫2xx2+1dx+∫1x2+1dx
=−log|x−1|+12log(x2+1)+tan−1x+c
=12[log(x2+1)−2log|x−1|+2tan−1x]+c
=12[logx2+1(x−1)2+2tan−1x]+c
=12[logx2+1(1−x)2+2tan−1x]+c