Let,
y=∫ab+cexdx
put
t=b+cex⇒ex=t−bc
dt=c.exdx
dx=dtc.ex
Now,
y=∫atdtc.ex
y=∫atdtc.(t−bc)
y=a∫1t(t−b)dt
y=a∫1t−b−1tdt
y=a[∫1t−bdt−∫1tdt]
y=a[log(t−b)−logt]+C
y=a[log(b+cex−b)−log(b+cex)]+C
y=a.logb+cex−bb+cex+C
y=a.logc.exb+c.ex+C