The correct option is
C log|sinx|−sinx+CLet
I=∫cos3xsin2x+sinxdx. Then,
I=∫cos2xsinx(sinx+1)cosx dx=∫(1−sin2x)sinx(1+sinx)cosx dx
Let sinx=t. Then, d(sinx)=dt or, cosx dx=dt.
Therefore,
I=∫1−t2t(1+t) dt=∫1−tt dt=∫(1t−1) dt
I=log|t|−t+C
I=log|sinx|−sinx+C