The correct option is A cos2alog|sin(x+a)|+sin2ax+c
∫cos(x−a)sin(x+a)dx=∫cos[(x−a)−2a]sin(x+a)dx=∫[cos(x−a)cos2a+sin(x+a)sin2a]sin(x+a)dx=∫[cos(x−a)cos2asin(x+a)sin(x+a)sin2asin(x+a)]dx=∫[cos2acot(x−a)+sin2a]dx=cos2a∫cot(x+a)dx+sin2a∫1dx=cos2alog|sin(x+a)|+sin2ax+c