wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate cosxdx(1sinx)(2sinx)

Open in App
Solution

cosx(1sinx)(2sinx)dx
Putting sinx=t
cosxdx=dt
=dt(1t)(2t)
=dt(t1)(t2)
1(t1)(t2)=At1+Bt2
1=A(t2)+B(t2)
1=At2A+BtB
1=(A+B)t2AB
On Comparing both sides
A+B=0 2AB=1
A=B 2AB=1
B=1
So A=1
B=1
cosx(1sinx)(2sinx)dx=(1t1+1t2)dt
=log|t1|+log|t2|+c
=log|sinx2|log|sinx1|+c
=logsinx2sinx1+c
=log2sinx1sinx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon