I=∫dθsinθ+sin2θ⇒I=∫dθsinθ+2sinθcosθ
Multiplying Numerator and denominator by tanθsec2θ, we get
I=∫tanθsec2θ2tan2θ+secθtan2θ dθ
Assuming secθ=x⇒secθtanθ=dx
I=∫x dx2(x2−1)+x(x2−1)
=∫x dx(2+x)(x2−1)
Using Partial fractions, we get
I=∫(12(x+1)−23(x+2)+16(x−1)) dx
⇒I=12log(x+1)−23log(x+2)+16log(x−1)+C