Given ,∫1(2x−7)√(x−3)(x−4)dx
Let,
y=∫1(2x−7)√(x−3)(x−4)dx
Put
2x−7=1t⇒x=1+7t2t
2dx=−1t2dt
dx=−12t2
Now.
y=∫11t√(1+7t2t)2−7(1+7t2t)+12×(−12t2)dt
y=∫2t2√(1+7t)2−7(1+7t)×2t+12×4t2(1−2t2)dt
y=−∫1√1−t2dt
∵∫1√a2−x2dx=sin−1xa+c
∴y=−sin−1t+c
y=−sin−112x−7+c