Consider the given integral.
I=∫dx√2ax−x2
I=∫dx√a2−(x−a)2
Let t=x−a
dt=dx
Therefore,
I=∫dt√a2−t2
We know that
∫dx√a2−x2=sin−1(xa)+C
I=sin−1(ta)+C
I=sin−1(x−aa)+C
Hence, this is answer.