We have,
∫dx√(x−1)(x−2)
Now,
∫dx√x2−x−2x+2
⇒∫dxx2−3x+2
Making completing square,
∫dx√x2−3x+2
⇒∫dx√x2−3x+94−94+2
⇒∫dx√(x−34)2−14
⇒∫dx√(x−34)2−(12)2
Applying formula,
∫1√x2−a2dx=ln∣∣x+√x2−a2∣∣
So,
∫dx√(x−34)2−(12)2=ln∣∣
∣∣(x−34)+√(x−34)2−(12)2∣∣
∣∣
=ln∣∣∣(x−34)+√x2−3x+2∣∣∣
Hence, this is the
answer