The correct option is
A 12log∣∣∣x2−x31+x∣∣∣+C∫dxx−x3=∫dxx(1+x)(1−x)
Breaking it into partial fractions
∫dxx(1+x)(1−x)=∫Adxx+∫Bdx(1+x)+∫Cdx(1−x)
1=A(1+x)(1−x)+B(x)(1−x)+Cx(1+x)
Put x=0
A=1
Put x=1
C=12
Put x=−1
B=−12
⇒∫dxx−12∫dx1+x+12∫dx1−x
=log|x|−12log|1+x|+12log|1−x|+c
=log∣∣
∣∣x(1−x)1/2(1+x)1/2∣∣
∣∣+c
=12log∣∣∣x2−x31+x∣∣∣+c
A is correct.