Consider the following Integral.
I=sin−1√x−cos−1√xsin−1√x+cos−1√xdx
Using formula:
sin−1√x+cos−1√x=π2
=2π∫(1sin−1√xdx−∫1cos−1√xdx)
=2π((xsin−1√x−∫1√1−x2xdx)−(xsin−1√x+∫1√1−x2xdx))
Let , t=1−x2 differentiate w.r.t x, we get.
dt2x=dx
=2π((xsin−1√x−∫1√txdt)−(xsin−1√x+∫1√txdt))
=2π((xsin−1√x−2√t)−(xsin−1√x+2√t))
I=2π((xsin−1√x−2√1−x2)−(xsin−1√x+2√1−x2))+C
Hence, this is the correct answer.