wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate sin1xcos1xsin1x+cos1xdx:

Open in App
Solution

Consider the following Integral.

I=sin1xcos1xsin1x+cos1xdx

Using formula:

sin1x+cos1x=π2

=2π(1sin1xdx1cos1xdx)

=2π((xsin1x11x2xdx)(xsin1x+11x2xdx))

Let , t=1x2 differentiate w.r.t x, we get.

dt2x=dx

=2π((xsin1x1txdt)(xsin1x+1txdt))

=2π((xsin1x2t)(xsin1x+2t))

I=2π((xsin1x21x2)(xsin1x+21x2))+C

Hence, this is the correct answer.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon