∫x2(x2+a2)(x2+b2)dx
Substituting x2=t for partial fraction,
x2(x2+a2)(x2+b2)=t(t+a2)(t+b2)
Let t(t+a2)(t+b2)=A(t+a2)+B(t+b2)
⇒t=A(t+b2)+B(t+a2)
Substituting t=−a2,
⇒−a2=A(−a2+b2)
⇒A=a2(a2−b2)
Substituting t=−b2,
⇒−b2=B(−b2+a2)
⇒B=−b2(a2−b2)
∴∫x2(x2+a2)(x2+b2)dx
=a2(a2−b2)∫1(x2+a2)dx−b2(a2−b2)∫1(x2+b2)dx
=a2a2−b2[1atan−1(xa)]−b2a2−b2[1btan−1(xb)]
[∴∫1x2+a2dx=1atan−1(xa)+c]
=1(a2−b2)[a tan−1(xa)−b tan−1(xb)]+c
where, c is constant of integration
Hence, the integration is
1(a2−b2)[a tan−1(xa)−b tan−1(xb)]+c