wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x2(x2+a2)(x2+b2)dx

Open in App
Solution

x2(x2+a2)(x2+b2)dx
Substituting x2=t for partial fraction,
x2(x2+a2)(x2+b2)=t(t+a2)(t+b2)
Let t(t+a2)(t+b2)=A(t+a2)+B(t+b2)
t=A(t+b2)+B(t+a2)
Substituting t=a2,
a2=A(a2+b2)
A=a2(a2b2)
Substituting t=b2,
b2=B(b2+a2)
B=b2(a2b2)
x2(x2+a2)(x2+b2)dx
=a2(a2b2)1(x2+a2)dxb2(a2b2)1(x2+b2)dx
=a2a2b2[1atan1(xa)]b2a2b2[1btan1(xb)]
[1x2+a2dx=1atan1(xa)+c]
=1(a2b2)[a tan1(xa)b tan1(xb)]+c
where, c is constant of integration
Hence, the integration is
1(a2b2)[a tan1(xa)b tan1(xb)]+c

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon